Friday, December 4, 2020

Euclid’s Division Lemma

Euclid’s Division Lemma

Given positive integers a and b, there exist unique integers q and r which satisfies the condition a = bq + r where 0 ≤ r < b

To calculate the Highest Common Factor (HCF) of two positive integers a and b we use Euclid’s division algorithm. HCF is the largest number which exactly divides two or more positive integers. That means, on dividing both the integers a and b the remainder is zero.

Watch Video Class 

 

Example: Find the HCF of 81 and 675 using the Euclidean division algorithm.

Solution: The larger integer is 675, therefore, by applying the Division Lemma a = bq + r where 0 ≤ r < b, we have

a = 675 and b = 81

675 = 81 × 8 + 27

By applying Euclid’s Division Algorithm again we have,

81 = 27 × 3 + 0

We cannot proceed further as the remainder becomes zero. According to the algorithm, in this case, the divisor is 27. Hence, the HCF of 675 and 81 is 27.